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1. Introduction

- The stiffness of bonded rubber blocks under small compressive defor-

mations has been studied extensively. A recent review deals with the

problem in connection with the use of elastomeric laminates as bridge

bearings (1). However, previous studies have been mainly concerned with a

flat rubber block bonded between two flat rigid plates. An approximate

treatment is given here for the stiffness of a rubber layer bonded

between two opposed curved rigid surfaces, cylindrical or spherical in

shape (Figure 1). The predictions of the theoretical treatment are then

compared with measured values of compressive stiffness for various in-

itial separations (and hence rubber layer thicknesses) of the two rigid

surfaces, relative to their diameter. ( c.. ... ,

2. Theoretical considerations

The analysis follows that of Gent and Meinecke (2), treating the

total compressive force F necessary to bring about a small compressive

displacement 6 as consisting of two parts: F, arising from a simple com-

pression of the rubber and F, arising from the restraints at the bonded

surfaces. Thus, the compression stiffness K(-F/6) is given by

K K, K2 (1)

OW 0
where K, - F,1 6, K2 F,16. C3

The calculation of K merely involves the integration of compressive

stresses on the assumption that the rubber is not bonded to the curved

surfaces and hence undergoes a simple compression. Details are given in Code

Appendix 1. The results areKot --



3 K, /4LE AI -/2 (2)

for a layer compressed between two long rigid cylinders of length L and

diameter D, where E is Young's modulus of the rubber. The term A repre-

sents

A = 1 + (hD), (3)

where h denotes the separation of the cylinders, and

I = [2/(A2 
- 1)1/2]tan-[(A - I)1/2/(A- 1)]. (4)

For a layer compressed between two rigid spheres of diameter D,

K1/DE = (Tr/2){A £n[A/(A - 1)] - 1} (5)

-:7 The terms K, are relatively small in comparison with the terms K

when the rigid surfaces are close together and the rubber layer is thin

at its center. Computation of K, is difficult, however. The stresses in

the interior of a bonded rubber block are complex. For simplicity, they

are replaced here by a hydrostatic pressure P, which is a function only of

the lateral distance x of the point in question from the central axis.

This simple stress system can be maintained only if the deformation takes

a particularly simple form, in which horizontal planes in the undeformed

material remain plane in the deformed state and originally-vertical

planes become parabolic displacement fronts in the compressed state.

E a o•..



This simple deformation regime has been assumed to hold previously for

rubber blocks compressed between flat parallel plates (2), and it appears

to be satisfactory, except near the free surface, when the block is thin

(3). In the present case, it will clearly be invalid away from the center

of the layer, but the contribution of rubber in these regions to the total

compressive force will be small anyway. The assumption is retained,

therefore, in order to calculate the extent of lateral bulging, shown

schematically in Figure 2, and the corresponding shear deformations which

are maintained by the internal pressure P.

Details are given in Appendix 2. The results for the maximum pres-

sure Pm when x = 0 and the stiffness component K. are as follows for a

layer compressed between two rigid cylinders

. (1/2 A)

K2/LE =(T/2),-AL(2A2 - 3)1 - 1]/2 (A2 
- 1), (6)

where A and I are given by equations 3 and 4, and

PmD/E6 - 1/ 2A(A - 1)2 (7)

For a block compressed between two rigid spheres:

K2/DE = (i/8)[3 + (1/2A) + {1/(A - +) 3A Ln{1 - (1/A)}] (8)

and

PmD/E6 - 1/ A(A - 1)2 (9)

I-
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Values of K, and K,, given by equations 2 and 6 for an elastic layer

bonded between two rigid cylinders and by equations 5 and 8 for an elas-

tic layer bonded between two rigid spheres, provide theoretical estimates

of the compression stiffness, equation 1. They are compared below with

experimentally-measured values of compression stiffness for layers of a

silicone elastomer of varied thickness h, bonded between two long rigid

cylinders or two rigid spheres.

3. Experimental details

(I) Preparation of test specimens.

Test specimens were prepared using a castable silicone rubber formu-

lation (Sylgard S-184, plus 10 percent of Sylgard C-184 crosslinking

agent, both supplied by Dow Corning Corporation). The mixture was de-

gassed under vacuum for 30 min and then poured into the mold cavity and

,. >cured for 24 h at 800 C.

Molds were prepared using thick Mylar film to contain the silicone

rubber formulation in the gap between two stainless steel tubes, placed

parallel to each other, or between two glass spherical flasks. The steel

tubes were 127 mm long and 19.0 mm in external diameter. The glass

flasks had an external diameter of 41.7 mm. Specimens were prepared

with various spacings in the range 2 - 30 mm.

Before use, the steel cylinders and glass flasks were thoroughly

cleaned and coated with a primer (92-023 primer, Dow Corning Corporation)

to secure good bonding to the silicone rubber compound.
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(ii) Measurement of compression stiffness.

Force-displacement relations were determined in compression, using

an Instron test machine to apply the loads and cathetometers to measure

the corresponding deflections. Values of compression stiffness were then

given by the initial slopes of the force-displacement relations.

,. In a separate experiment, using a a cast bar of the same rubber com-

pound under small tensile deformations, the value of Young's modulus E

for this material was found to be 2.53 _ 0.1 MPa.

4. Experimental results

Experimentally-determined values of the compression stiffness K are

given in Table 1 for rubber layers bonded between two rigid cylinders and

in Table 2 for rubber layers bonded between two rigid spheres. These

" results are plotted in Figure 3 in a reduced form; K/LE for layers of

length L compressed between two rigid cylinders and K/DE for layers

compressed between two spheres of diameter D, where E is Young's mod-

ulus; against the minimum separation h of the rigid members relative to

their diameter D. Because of the wide range of values, logarithmic

scales have been employed for both axes.

When the effects of outward bulging are ignored and only the stiff-

ness component K arising from simple compression is considered, equa-

tions 2 and 5 predict an inverse dependence of the reduced stiffness upon

the ratio h/D, for relatively large separations. Such a dependence

is represented by the broken linear relations in Figure 3, with a slope of

-1: K/LE = (4/3) (D/h) and K/DE = (7/4) (D/h).

I%pm
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As can be seen in Tables I and 2, and Figure 3, the experimental results

are in reasonably good agreement with the theoretical predictions. For layer

thicknesses, denoted by the ratio hID, smaller than about 1 the measured

stiffnesses for layers between two rigid spheres tend to be somewhat lower

than an inverse proportionality to h/D would suggest, in accordance with the

4 full theory (lower full curve in Figure 3). Measured stiffnesses for layers

between two rigid cylinders, on the other hand, tend to be somewhat higher

at small thicknesses than an inverse proportionality to h/D would require, but

again the actual dependence is predicted reasonably well by the full theory,

at least for minimum separations h as small as about 0.1 D.

We conclude that the theoretical treatment, although including severe

approximations, accounts satisfactorily for the stiffness of thin elastic

layers bonded between two rigid parallel cylinders or between two rigid spheres,

over a wide range of layer thickness extending down to one-tenth of the cylinder

or sphere diameter and probably to still smaller thicknesses.

.

,4 . . 4
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Appendix

1. Calculation of stiffness component K arising from simple compres-

sion.

(a) Layer between two parallel rigid cylinders.

A sketch of the deformed cross-section is shown in Figure 2.

The compressive force dF in an element of width dx and of unit

length, located at a distance x from the center, is given by

dF, = 4E6 dx/3hx (A.I)

' "where

h x = h + D(1 - cos 6) (A.2)

and

x =(D/2) Sin 6. (A.3)

The effective value of the compression modulus has been taken as

4E/3 in equation A.1 because, for relatively-long cylinders, the

'N;-..

material undergoes only lateral displacements on compression. On

substituting in equation A.1 for hx and x from equations A.2 and

A.3, and integrating between 8 - -1T/2 and 0 - +r/2, the compressive

force component F, per unit length is obtained as

3F1 /4E6 - AI -/2 (A.4)

[- . -'.



where A and I are defined in equations 3 and 4.

(b) Layer between two rigid spheres.

In this case the compressive force dFi in an elementary ring

of radius x and width dx is given by

dF 1 ; 2rE6x dx/hx (A.5)

where hx and x are given in terms of the subtended angle e (Figure

2) by equations A.2 and A.3. On integrating between x = 0 and

= 1 /2, the result given in equation 5 is obtained.

2. Calculation of stiffness component L and maximum pressure Pm-

(a) Layer bonded between two parallel rigid cylinders.

The volume x6 displaced by compression of the material lying

initially between vertical planes at x = 0 and x = x is represented

by a cross-hatched region in Figure 2. The outward bulge it gives

rise to, assumed parabolic in shape, is represented by the second

cross-hatched region, having a maximum lateral displacement kx.

If the material is incompressible in bulk, these two volumes are

equal and hence

kx 3x6/2 hx * (A.6)

*] The pressure gradient necessary to maintain the parabolic dis-

placement is given by (2):

'



- -
'  
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dP/dx = -8Ek x /3h' -4E6x/hx'. (A.7)

On integrating between the free surface lying at x = D/2 and x x,

the pressure at x is obtained as

;- ,

Px - (E6/2AD)/(A sec e - )' (A.8)

and the maximum hydrostatic pressure set up at x = 0 = 0 is then

Pm - E6/2AD(A - 1)2. (A.9)

A contribution to the normal force acting on the cylinders at x - 0

is also made by the simple compressive force treated in Appendix 1.

It amounts to 4E6/3h, from eqi ation A.1.

The normal force F__ per unit length associated with the pres-

sure distribution Px is obtained by integrating equation A.8

between a =-1/2 and e-+ 12:

7r/2
,'"F 2  = J Px dx, (A.IO)

yielding the result given in equation 6.

(b) Layer bonded between two rigid spheres.

In this case, conservation of volume on compression and the

assumption of a parabolic displacement bulge, Figure 2, leads to
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the following relation for the maximum lateral displacement kx

=kx  3x6/4hx (A.1 1)

in place of equation A.6. The corresponding pressure gradient is

given by

dP/dx =-2E6x/h 3 (A.12)

in place of equation A.7. On integrating between the free surface

at x - D/2 and x = x, the pressure at x is now obtained as

Px (E6/4AD)/(A sec 8 - 1)2 (A.13)

and the maximum hydrostatic pressure set up at x = 0 - 0 is

m E6/4AD(A - )2. (A.14)

The normal force F1, arising from the pressure distribution

Px, is given by integrating equation A.13 over the bonded surface,

yielding the result given in equation 8. Again, an additional con-

tribution to the normal stress at x - 0 is made by the simple com-

pression term treated in Appendix 1. It amounts to E6/h.

.. .. . . .

.p. , * . . . - -

..] ., ... , . - • .. .. • o , ,,.j % ... . ... . • . " .' .. ,. .• .. . , . , • .. .' *".'" '.' °. " "'-""b,."' " - .
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Table 1: Compression stiffness K for rubber layers of various minimum

thickness h, bonded between two parallel rigid cylinders of diameter

D = 19.0 mm and of length L = 127 mm.

h K (expt.) K/LE (expt.) K/LE (calc.)

(mm) (MN/m)

1.975 7.70 23.95 19.15

1.985 5.60 17.45 19.05

4.00 2.10 6.54 7.55

4.05 1.98 6.16 7.40

7.30 1.11 3.46 4.05

7.90 0.85 2.645 3.30

15.65 0.365 1.135 1.55

.4..
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Table 2: Compression stiffness K for rubber layers of various minimum

thickness h, bonded between two rigid spheres of diameter D = 41.7 mm.

h K (expt.) K/DE (expt.) K/DE (calc.)

(mm) (kN/m)

2.67 760 7.20 7.10

2.88 538 5.10 6.63

3.13 635 6.02 6.15

5.85 380 3.60 3.52

9.15 268 2.54 2.38

9.80 210 1.99 2.24

13.45 169 1.60 1.71

21.6 98 0.929 1.135

,C 28.1 101 0.957 0.905

eC. -

. , , .4." .r, . , .. "W" -, ' .- . - - . " ". ". • ". .. ... .-.. .".".. . . . . . . .-.. . . . . .".. . . , 
1

. S 
' ; \ ' "C
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Figure Captions

Figure 1. Rubber layer (cross-hatched) bonded between (a) two rigid spheres

and (b) two rigid parallel cylinders.

Figure 2. Sketch of a half-section of a compressed layer, showing the volume

between x = 0 and x that is displaced by compression and the maximum lateral

displacement kx of the plane initially at x.

Figure 3. Experimental measurements of compression stiffness K for rubber

layers bonded between two rigid parallel cylinders (open circles) and between

two rigid spheres (filled-in circles) plotted against the minimum thickness

h relative to the diameter D of the cylinders or spheres. The full curves

represent the theoretical predictions; equations 2 and 6 for cylinders and

*. equations 5 and 8 for spheres. The broken curves represent the theoretical

.. predictions when the separation h/D is relatively large and the restraints

at the bonded surfaces become u I;'rtant.

A'P.

C.

m
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